Ensembling Solutions for Semi – Supervised Clusters
نویسندگان
چکیده
منابع مشابه
Temporal Ensembling for Semi-Supervised Learning
In this paper, we present a simple and efficient method for training deep neural networks in a semi-supervised setting where only a small portion of training data is labeled. We introduce self-ensembling, where we form a consensus prediction of the unknown labels using the outputs of the network-in-training on different epochs, and most importantly, under different regularization and input augm...
متن کاملSupervised and Unsupervised Ensembling for Knowledge Base Population
We present results on combining supervised and unsupervised methods to ensemble multiple systems for two popular Knowledge Base Population (KBP) tasks, Cold Start Slot Filling (CSSF) and Tri-lingual Entity Discovery and Linking (TEDL). We demonstrate that our combined system along with auxiliary features outperforms the best performing system for both tasks in the 2015 competition, several ense...
متن کاملAn approach to water supply clusters by semi-supervised learning
The rational distribution of water in a water supply network (WSN) is a complex problem, especially for systems of large scale. Its complexity is continually increasing from the point of view of technical management. The division of WSN into hydraulic zones is a partition of the supply network into subsystems with controlled inputs and outputs, building smaller independent networks. This soluti...
متن کاملSemi-supervised model-based clustering with controlled clusters leakage
In this paper, we focus on finding clusters in partially categorized data sets. We propose a semi-supervised version of Gaussian mixture model, called C3L, which retrieves natural subgroups of given categories. In contrast to other semi-supervised models, C3L is parametrized by user-defined leakage level, which controls maximal inconsistency between initial categorization and resulting clusteri...
متن کاملComposite Kernel Optimization in Semi-Supervised Metric
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal for Research in Applied Science and Engineering Technology
سال: 2018
ISSN: 2321-9653
DOI: 10.22214/ijraset.2018.3657